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The direct CI method, which avoids explicit calculation of the Hamiltonian 
matrix, is presented in a new form. The method is linked with Davidson's algor- 
ithm for "iterative evaluation" of the ground state eigenvector. The viability 
of the method is indicated by the test calculations on water which are described. 
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1. Introduction 

A major difficulty encountered in large-scale configuration interaction (CI) calculations 
has been the construction and storage of the Hamiltonian matrix. An approach which 
bypasses this problem has been proposed and implemented by Roos [1 ].  The method 
is applicable to a singlet CI expansion which is a closed shell determinant together with 
all single and double excitations to a chosen set of  virtual orbitals. In essence the method 
involves the direct computation, from one- and two-electron integrals, of the vector 
Hc, where H is the CI matrix and c some approximation to an eigenfunction of H. This 
quantity Hc which is required at some stage in the iterative methods currently used to 
obtain eigenfunction of very large matrices [2, 3] is evaluated using e, the one- and 
two-electron integrals, and various coupling constants. The coupling constants, which 
are the elements of a set of 5 by 5 matrices, may be derived by consideration of the 
different types of matrix element which can occur. They are tedious to calculate [4] 
and some errors are present in those published by Roos [1]. Roos divides the excitation 
functions into six classes, namely 

( t~tin } ; mm mn mm {t~ii }, {t~ii }, {~ij }, { ~ n }  and (d/i j,mn}. 

Where for example {~m } denotes the set of singlet functions obtained by promoting 
an electron from an occupied orbital - denoted by i - to a virtual orbital denoted by 
m. For double excitations, in the spin coupfing scheme used by Roos, we have singlet 
functions constructed from determinants in which two electrons with different spins 
are excited -leading to sets two to five, and singlet functions which also include deter- 
minants where two electrons of the same spin are excited, which gives the last set 

,mn {t~i] }. It is the occurrence of these five different classes of double excitation func- 
tions which leads to the five by five matrices. It is the purpose of this paper to show 
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how the first type of double excitation function, sets two to five, may be treated as 
a single set, so that the problem then reduces to a consideration of only three sets of 
functions with corresponding simplifications in the implementation of the method. 
The direct CI method is attractive and likely to be widely used because in addition to 
making very large calculations feasible the computational effort involved is not much 
larger than that required for an SCF calculation. 

2. The CI Expansion and Energy Expression 

Let ~b o be a single determinant of doubly occupied orbitals. Let the set of orbitals 
occupied in ~o be S o and individual niembers of S o be denoted by letters i , / ,  k ,  and 
l. Further let S v be a set of  virtual orbitals to which excitations can be made. We shall 
denote particular members of Sv by m, n, p and q. It is assumed that the composite 
set of orbitals is orthonormal. We define our singly and doubly excited functions using 
the particle hole formalism of second quantization [5]. The operators refer to r as a 
vacuum state. Thus b~ is the creation operator for a hole in orbital i (annihilation of 
electron in orbital i). We shall use the operators which refer to spin orbital occupations, 
thus b~ creates a hole in orbital i with/3 spin; b[ the same but with a spin, bnt creates 
an electron in orbital n with a spin; n E Sv. 

The single and double excitation functions are defined as 

~m = (1/X,f~)(br162 i + btmbr (1) 

~ n  = :l~O, t b t b t  b y b t b t b  r b y b y b t b t b t  + b t  btb tb%.1 ,  k4l~yn ] • T + ~ ]- m i + m ] ~ ~- m ]- n i :~'o (2) 

xi/mn=(�89 i +2btbtbt_bYn / m , +btbt'btn , m i by- 

+bt_bY~b t b?~ - b t b t b t b  ? _ b t b t b t b % , t ,  
n ] m m / ~ ~ m f n i:"~o (3) 

and the CI expansion as 

mn mn =CoCo + c m ~  m +c~n~b~ 'n +di/ Xii , (4) 

where a repeated index implies a summation. Thus 

i~ S O 
m~Sv  

The e's and d's are the CI expansion coefficients. From the definitions (2) and (3) it 
is apparent that the r  and d ~  n are not uniquely defined because 

= c m. = = ( S )  

and 

Xin/n : -X/mn = - X ~  "m = X~ .m (6) 

The expansion (4) is not in terms of a linearly independent set. In a conventional expan- 
sion only one of the forms in (5) (or (6)) would be used in the expansion and it would 
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occur with a coefficient equivalent to ( c ~  n + c~ m + cj mn + c~ m )  (i  # ] ;  m ~ n )  etc. It is 
this quantity which is uniquely determined when the secular equations are solved. The 
expansion (4) is more convenient for our purpose because the summations are unrestricted 
The overlap term ( if[ ~k) is readily evaluated. 

(~j[~l) c2 + c m c m  1 mn mn mn nrn = + (-4)cij (vii + r 4" vii 4- c~ m )  

i" 1 "t drnn EAton nm q- ~.-4,'*i] ~.~*ij - d}mn - di] + d~  m )  (7) 

Returning to the definitions (2) and (3) we note that if i v~] and rn # n then: 

mm rnm (~.lii [t~ii } = 1, (8) 

(l~limnl~imn) = ( ~ ) ~ m i ~ / ~ m }  = i ,  (9) 

( ~ n  I n n _  rnn m n -  1 
[~ij  ) - (Xi] Ixij ) - -4 (10) 

Yl'l r l ' t  . m n l ' n  l ' l  so that the functions ~Ji mm, N/r2~imn;Nl~Jij ,2~ij and 2Xq are normalized to 
unity. 

It is seen that the expression (7) correctly includes the terms when i = ] or m = n. 

Finally we note that (6) implies 

Xir~n _ mm mm - Xq = Xii = 0  (11) 

and that (7) correctly excludes terms arising from the coefficients of  such functions. 

The usual method for solving an equation of  the form 

J s  = E T  (12) 

using an expansion in an orthonormal basis ~b = (r �9 �9 �9 Cn) leads, via the variation 
principle, to the secular equation 

Ha = Ea  (13) 

where the matrix H and the column vector a are representations of J ~  and T in the 
basis r  (13) is derived via the relation 

(~I, [air) --- a t a  (14) 

which results from the orthonormality of  the basis q~. 

As indicated earlier our expansion (4) contains tinearly dependent terms which lead 
to cross terms appearing in the overlap expression which is our equivalent of  (14). 
However it is only the quantities Co, c m , ( c ~  n + cg .m + cj mn + c~ .m) and ( d ~  n - d~ m n -  

d~ m + d ~  n)  which we seek to obtain. We are therefore free to impose relationships 
between the c ~  n (and dr~ n)  belonging to the same i , ] ,  m and n. 

A natural choice is 

g~n  = r = C~./n = C.~im (15) 

d ~  n = -d~  m n =  - d ~  "m = d~ "m (16) 
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in that (7) reduces to 

(~[ff) = c g + cmc m + c ~ n c ~  n + d ~ n d ~  n (17) 

which is of the same form as (14). Further (16) supports the condition (11). 

The CI problem using the expansion (4) and conditions (15) and (16) is thus equivalent 
to solving (13) where H is now the matrix of J {  over all the functions in (4) and a is the 
vecto r containing all the coefficients occurring in (4). For the remainder of the paper 
we t a k e / / a n d  a to be these quantities. We now wish to indicate expressions for 
the matrix elements of H and to indicate how the quantities Ha can be evaluated di- 
rectly and conveniently from the integral lists. 

The energy expectation value ( ~ I X ] ~ )  is most conveniently evaluated using the methods 
of second quantization. In particular the operator (~gt ~  Eo), where E o = <~o IJ f l  ~o >, 
can be represented in a normal product form [5] in which, along with the usual electron 
repulsion operator g(i, j )  = 1/ri], there occurs the Fock-like one-electron operator h F 
with matrix elements 

( r l h V l s ) = ( r l h l s ) + 2  ~ ( ( r i l g l s i ) - � 8 9  (18) 
i~So 

The standard procedure is then to express the matrix element corresponding to the 
energy relative to E o as a sum of products of normal products and to use the general- 
ized Wick Theorem to evaluate the matrix elements. The operations involved, though 
individually simple, are somewhat numerous and it was found expedient to program 
the technique. This had the added advantage that the resulting expressions, which 
involve a large number of terms, could be automatically sorted and classified. 

As is to be expected from (7) the expression for (E - Eo) involves coefficients 
occurring as sums of the possible permutations of the indices. These may be simplified 
using Eqs. (15) and (16). We have also included the condition that the coefficients and 
orbitals be real. We obtain, 

( E - E o )  =El  +E 2 

where 

1 E  1 = ( n  ] h F l m )  r l - n - m  rn'pemP +dnPd.m. p )  
C$ci c i  + ~;t ~'ji It It 

( j lhV]i) . l  n n +  nm nm a_.lnmanm~ 
-- I,~C i C) Cik C)" k - u k i  Ukj  ) 

+ (m Ih F Ii) (V~CoC7 + V'2c~imc'/+ X/-6d;nmc~) 

and 

Ez 

0 9 )  

(20) 

= <qp Igl.m> (4."q} m + a)7 'ay")  + q lgl + 
,-~ nP~mp ~Anp,amp np mp + (nj ]g Jim) (2cnc~ n + ~a.ik ~'jk + '-"in " jk  - 4 ~ e e i d k j  

+ 2CoCy" + vri coay n) 

- (in ]gl im ) (epe~ n + 4c~.Pc'~ p + 4dn~pd~ p) + (pn ]g [mi) 

x (2X/2dTjinc~ + 2v~d~inc} n) + ( m k l g l j i ) ( - 2 V ~ c ~ m e ~  + 2X/6d~'me~) (21) 
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Eqs. (20) and (21) are not unique expressions, E 1 and E 2 may be written in many 
different ways using (15) and (16). Because the energy may be written in the form 

(E  - E o )  = a? Ha - E o (22) 

(20) and (21) lead directly to the elements of H. A particular element of H being the 
factor associated with the pair of appropriate CI coefficients. This is not strictly correct, 
for example from E 1 the factor associated with cnPc]i p is 2 {<n I h F In > - <j[h F I J >}, so 

n p  np  p n  p n  1 
that apparently < ~]i I J f l  ~ji ) 4= < ~ij I J~f~l ~ij >" 

This lack of correct symmetry stems from the way in which the energy expression 
has been simplified. This defect can be remedied in two ways. Either the expressions 
(20) and (21) can be expanded using (15) and (16) until they have the correct symmetry, 
or, matrix elements can be taken as being equal to the appropriate average of the matrix 
element values obtained from (20) and (21) for those matrix elements which are related 
as a consequence of (5) and (6). The former method is more elegant, the latter more 
convenient computationally. In the next section we consider the solution of the secular 
equations. 

3. Solving the Secular Problem 

The lowest eigenvalue and eigenfunction of large CI matrices have most frequently 
been obtained using Nesbet's method or one of its modifications [2]. These methods 
require the rows of the Hamiltonian matrix to be used one at a time in order to 
successively improve one by one the components of the approximate eigenfunction. 
If an attempt is made to simultaneously update all components the methods frequently 
fail to converge and often diverge [3]. The matrix element expressions contained in 
(20) and (21) are most suitable for the computation of contributions to the matrix 
elements in the order generated by considering each two-electron integral in turn. 
The two-electron integrals themselves are kept in backing store. We therefore require 
a method of solving the secular equations which does not depend upon access to the 
matrix elements in some particular order. Roos [1 ] presented a method, based upon 
higher orders of perturbation theory, and indicates that convergence can usually be 
obtained in 10 iterations. 

More recent calculations by Roos and co-workers have used a "nonlinear variation- 
perturbation" method developed by Brgdas and Goscinsky [9]. In this method the 
successive perturbation expansion functions are evaluated, and are then used variation- 
ally to obtain the eigenfunction for the Cl problem by solution of a small-order 
secular problem. This variation-perturbation method gives faster convergence than the 
original scheme used by Roos. More recently Davidson [3] has given another algorithm 
which has some similarities to the method of Brgdas and Goscinsky. The method involves 
a compromise between repeated evaluation of a first-order correction to a trial eigen- 
function and a Lanczos method. Thus, like the method of Bfiidas and Goscinsky, the 
method is variational in that a small-order secular equation in the correction functions 
is solved. Unlike the Brtidas and Goscinsky method the successive correction functions 
are determined as a first-order perturbation term, rather than using the higher order 
terms of the Rayleigh-Schr6dinger perturbation theory. The Davidson method allows 
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the evaluation of  higher roots without necessarily determining the lower root first. 
We have used the Davidson method in order to solve the CI secular problem. The 
Davidson method involves as a basic step the evaluation of  vectors//b i where b i is a 
vector obtained during the ith iteration. Since evaluating H b  i does not depend upon 
access to the elements of  H in any particular order if the vector b i can be accessed 
randomly the method is ideal for our purpose. In order to aid discussion of  our imple- 
mentation of  the CI calculation we now indicate briefly the steps in the Davidson 
algorithm when used for the lowest root. 

(1) Select a normalized vector b I as an approximation to the desired eigenfunction. 
Form l i b  1 and X = b 1 � 9  1 ; Store b 1 and l i b  1 (on disk); set cq = 1.0, M = 1 

and A 11 = )k. 

M (o~iHb i )to~ibi). (2) Form q = ] ~ i = 1  

(3) Form II q II. If  II q [[ is sufficiently small the method has converged. We found 
II q 1] "" 10-4 indicated the correlation energy converged to about 8 significant 
places. 

(4) Form p with elements P i = q i/ ( ~ - -  t t i i ) "  
(5) Orthogonalize p to the vectors b i q  = 1,M) by application o f  the Schmidt process 

p - + p - b i ( b i ' p ) ,  i = 1 . . . M .  

(6) Normalize the resulting p vector which is to be b M+I . Form l i b  M+I , store b M+I 

and Hb M+I , set M to M + 1. Form a new border to the matrix A 

A i M = A M i = b i ' ( H b M ) ,  i = 1 toM.  

(7) Diagonalize the M by M matrix A, set X to the lowest root; set c~ i (i = 1, M) equal 
to the components of  the lowest eigenvector. (When required, i.e. at convergence, 
the eigenvector of  Hi s  M " �9 ~i=10~i  bt ,  X is the eigenvalue.) Go to step (2). 

The problem is to calculate Hb i, where b i represents a set of  values for the coefficients 
rn mn mn b i h F Co, ci , cij and dij  . The vector and matrix are kept in core. Space is also 

allocated in core to accumulate the vector H b  i as it is formed. The two-electron integ- 
rals, which if fro is the SCF determinant are integrals in the SCF-MO basis, are kept 
on backing store sorted into the six classes which occur in (21), each class being pro- 
cessed separately. 

i i If  a term b j b ~  occurs in the energy expression it may be regarded as representing the 
l t ,  i t , i  l t ,  i t , i  two contributions ~,byL,~, gu~yuc~ to the energy b i t tb  i. T h e  corresponding contributions 

to (ttbi)ot a n d  ( t t b i ) [3  a r e  then respectively -~b~ and -~vb/. The method of  building up 
H b  i is thus to consider each element o f h  F and each two-electron integral in turn and 
to obtain the contributions to H b  i by multiplication by the appropriate constants and 
b / ,  proper regard being paid to implicit summations and to the permutation symmetry 
of  the two-electron integrals. The final vector 11b i will not possess the correct symmetry, 
and this is corrected by averaging, e.g. if b i does not fulfil conditions (15) and (16) then 
replace each 

o~ n by I mn mn + o~.m + (~)(oij + c ,  c~ m) 
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and each 

.1_ mn d~ n by(4)(di]  - d )  m n - d ~  m +d~m).  

//b i can be similarly dealt with. The diagonal elements of H, required in step (4) of 
Davidson's algorithm may be calculated in a manner similar to that outlined above. 

The core requirements, for both the Davidson algorithm and the calculation of the 
Hb i, are limited to twice the core storage needed for the vector b i. In this implementa- 

tion of the method we store all the coefficients, although in principle it is only neces- 
sary to keep a unique set. Thus in our trial calculation on H20 with five occupied and 
fifteen virtual orbitals a total of 190 K bytes was required for storage of the vectors. 
If unique coefficients alone were stored only some 50 K would be required. 

4. Trial Calculations 

In order to assess the viability of the approach we have carried out a number of small 
calculations on the water molecule using a basis set of 20 contracted Gaussian orbitals 
[6]. The standard geometry Ro l l  = 1.811 Bohr and 0 = 104.45 ~ was used. 

Results were obtained, using 10, 13 and 15 of the virtual SCF-MO's, in order to assess 
how the iteration time and speed of convergence varied with the number of 
configurations. 

In Table 1 we give details of timings whilst in Table 2 we indicate the performance of 
the Davidson algorithm. The CI iteration time is seen to be comparable with the total 

Table 1. Details of water calculations using [11s, 3p] basis 

AO Integral Calculation b Time (sec) a 
SCF Calculation Time b (sec) 
MO Integral Transformation b Time (sec) 
Number of Virtual Orbitals Used 10 
Number of Distinct Configurations c 1276 
Number of Coefficients 5051 
Time per Iteration (sec) 3 
Number of Iterations for Convergence of 

(E - Eo) to Six Significant Figures 5 

7.9 
6.1 
9.1 

13 
2211 
8516 

5 

15 
2926 

11326 
8 

5 5 

a Times refer to cpu time on 360/195. 
b Using the ATMOL series of programs as implemented by the Atlas Computer Laboratory, 

Chilton, Didcot, U.K. 
c Spacial symmetry has not been used in order to reduce the number of configurations considered. 

SCF time, and to increase in an approximately linear manner with respect to the 
number of configurations. The iteration times are particularly encouraging as no 
serious attempt has yet been made to optimize the program. The number of con- 
figurations quoted exaggerates slightly the size of the problem in that configurations 
which were not ofA 1 symmetry were not excluded. In fact for 15 virtual orbitals and 
our basis set there are 2345 functions ofA 1 symmetry. For the Roos method [1] as 
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implemented in the program Molecule the times per i terat ion are quoted by Diercksen 
[7] as 30 sec (CPU 360/91) for a 1917 configuration problem. 

Table 2 shows the excellent convergence properties of  the Davidson method.  Between 
3 and 5 i terations will suffice depending upon the accuracy the final energy and 
eigenvector are required to have. On this l imited evidence it would appear that the 

Table 2. Performance of the Davidson method 
for the calculation with 15 virtual orbitals 

Iteration (E - E o) Hartree II q 11 

1 -0.152116456 0.14 • 101 
2 -0.158570082 0.37 x 100 
3 -0.158828614 0.34 x 10 -1 
4 -0.158850097 0.15 x 10 -1 
5 -0.158851113 0.21 x 10 -2 
6 -0.158851151 0.67 x 10 -3 
7 =0.158851153 0.10 x 10 -3 

algorithm is superior to the Roos per turbat ion scheme. In Table 3 the energies obtained 
in the three calculations are given. These are not  of  particular interest in themselves as 
many more extensive calculations have been made [8],  but they may be of  use as 
reference data for other implementat ions o f  the method.  

Table 3. Energies obtained in the different calculations (in Hartrees) 

SCF Energy E 0 
(Electronic + Nuclear Repulsion) 

Number of Virtual Orbitals Used 

Correlation Energy (E - Eo) 

-76.020250 

10 13 15 

-0.123043 -0.146534 -0.158851 

The program, and hence by  implication Eqs. (21) and (22), has been extensively 
checked against a "brute  force" small CI program which sets up the CI matr ix using 
Slater's Rules. The quant i ty  b i " (Hb i) from one program being compared with (E - Eo) 
as obtained from the second, the b i being constructed so that only 60 or fewer con- 

figurations were represented. Agreement between the two programs was obtained 
(eventually) to 11 significant figures, for bi's which represented all the different 
classes of  interaction between determinants.  Finally we should indicate that  the initial 
choice of  b i for step (1) was initially made somewhat arbitrarily by  using an eigen- 
vector from the small CI package when the first sixty configurations were considered. 
However, the Davidson algorithm worked just as well if we began with Co = 1.0 and all 
other coefficients zero. (It is then necessary to set X 4= H l l  for i terat ion 1 to avoid the 
singularity in step (4). We found X ~ X - 0.1 satisfactory.) 
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5. Conclusion 

The new variant of the direct CI approach described here is seen to be simpler in 

formulation than that originally proposed by Roos, and to be computationally feasible 
when linked with the Davidson algorithm. The Davidson method is seen to be a very 
effective way of obtaining the eigenvectors and eigenvalues of large matrices. Finally 

we note that the advantages of the direct (Roos) approach to the CI problem are two- 

fold, the ability to handle very large matrices, and the rapidity with which the 
calculations can be carried out. 
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